Institut Dr. Haag GmbH

Friedenstraße 17 70806 Kornwestheim

Telefon 07154/8008-0 Telefax 07154/8008-55 info@institutdrhaag.de institutdrhaag.de

Institut Dr. Haag GmbH · Friedenstraße 17 · 70806 Kornwestheim

Zweckverband Interkommunaler Industrieund Gewerbepark Zollernalb (IIGP) Hauptstraße 9 72469 Meßstetten INSTITUT DR. HAAG

augrund

Kornwestheim, 22.12.2022 Projekt Nr. 62702-3

Geotechnischer Bericht

Projekt:

Erschließung Interkommunaler Industrieund Gewerbepark Zollernalb über
50
Jahre
Kompetenz

U m w e l t A I t I a s t e n H y d r o g e o I o g i e Abbruchkonzeption Wohngiftberatung G e o t h e r m i e

L a b o r
B a u s t o f f p r ü f u n g
A s p h a l t
B e t o n
B o d e n m e c h a n i k
Prüfstelle nach RAP Stra
A1; A3; A4; D0; D3; D4; E3;
G3; H1; H3; H4; I1; I2; I3; I4

B a u g r u n d
Baugrunduntersuchung
Gründungsberatung
G e o t e c h n i k
Ingenieurgeologische
G u t a c h t e n
S i G e K o

Amtsgericht Stuttgart HRB-Nr. 204471

Geschäftsführer Heidrun Haag

Auftraggeber: Z

Zweckverband Interkommunaler Industrieund Gewerbepark Zollernalb

Stheim hei Stuff

Inhaltsverzeichnis

1	Vorbemerkungen	3
2	Allgemeine Angaben	3
2.1	Erläuterung der Aufgabenstellung	3
2.2	Bearbeitungsunterlagen	3
3	Standortsituation	4
3.1	Vorhaben und Geländesituation	4
3.2	Geologie und Hydrogeologie	5
4	Feld- und Laboruntersuchungen	5
5	Zusammenfassung der Aufschlussergebnisse	7
5.1	Beschreibung der Bodenschichten	7
5.2	Einteilung in Homogenbereiche nach DIN 18300	11
6	Charakteristische Boden-/Felskennwerte	13
6.1	Hydrologische Situation	13
7	Abfallanalytische Untersuchungen	14
8	Empfehlungen zum Kanalbau	15
8.1	Baugrund im Bereich der Kanalsohle	15
8.2	Grabenherstellung	15
8.3	Rohrauflager und Grabenverfüllung	15
8.4	Bautechnische Hinweise	16
9	Empfehlungen zum Verkehrswegebau	17
9.1	Erdplanum	17
9.2	Straßenoberbau	17
9.3	Bautechnische Hinweise	18
10	Empfehlungen für die Regenrückhaltebecken	19
11	Angaben zur Bebauung	19
12	Angaben zur Erdbebensicherheit	20
13	Abschließende Bemerkungen	20
	Taballan Anlagan und Anhangvarzeighnig	01

1 Vorbemerkungen

Der Zweckverband Interkommunaler Industrie- und Gewerbepark Zollernalb (IIGP) beabsichtigt die Erschließung des Industrie- und Gewerbeparks Zollernalb. In diesem Zusammenhang sollen Erschließungsstraßen und Regenrückhaltebecken angelegt. sowie Ver- und Entsorgungsleitungen verlegt werden. Mit der Planung ist die mayer Ingenieure GmbH aus Böblingen betraut.

In Vorbereitung der weiteren Bauplanung und Ausschreibung wurde die Institut Dr. Haag GmbH mit der Baugrunderkundung und der Erstellung eines Geotechnischen Berichts auf Grundlage unseres Angebotes Nr. 1575 vom 29.10.2021 beauftragt.

2 Allgemeine Angaben

2.1 Erläuterung der Aufgabenstellung

Im Rahmen dieses Berichtes sind folgende Aussagen zu treffen:

- Beurteilung der geologischen-hydrologischen Standortsituation
- Beschreibung des Untergrundes
- Einordnung in Boden- und Felsklassen / Homogenbereiche nach DIN 18300
- Angaben zu relevanten Bodenkennwerten und zur Frostempfindlichkeit der Böden
- Beurteilung der Tragfähigkeit der Untergrundschichten
- Beschreibung der Grundwasserverhältnisse
- Aussagen zur Wiederverwendbarkeit der Erdstoffe
- Hinweise zur Wasserhaltung
- Empfehlungen zum Straßen- und Leitungsbau
- Bewertung der Untergrundverhältnisse im Bereich der geplanten RRB

2.2 Bearbeitungsunterlagen

- [1] Lageplan Grundlagenermittlung "IIGP Zollernalb", M 1:1000, Mayer Ingenieure GmbH, Böblingen, 05.10.2022.
- [2] Lageplan Vorplanung "IIGP Zollernalb", M 1:1000, Mayer Ingenieure GmbH, Böblingen, 06.10.2022.
- [3] Universität Stuttgart: JVA Meßstetten Gelände der Zollernalbkaserne Zollernalbkreis Geotechnische Standortuntersuchung. Bericht-Nr.: G12-004 Datum:
- [4] Technische Erkundung im Vorfeld einer Ertüchtigung der vorhandenen Verkehrsflächen - Konversion der Zollernalbkaserne - Interkommunalen Industrieund Gewerbepark Zollernalb (IIGP), Gutachten Nr. 251076, Institut Dr. Haag,
- [5] Ergebnisse der Sickerversuche Erschließung Industrie- und Gewerbepark Zollernalb, Gutachten Nr. 62702, Institut Dr. Haag, 01.02.2022
- [6] Geologische Karte von Baden-Württemberg, Blatt Nr.(Meßstetten) 7819 und 7820 (Winterlingen), Maßstab 1:25.000
- [7] Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen -RStO 12

- [8] Zusätzliche technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau - ZTV E-StB 17
- [9] Verwaltungsvorschrift des Umweltministeriums für die Verwertung von als Abfall eingestuftem Bodenmaterial vom 14.03.2007
- [10] Karte der Frostzonen, Bundesanstalt für Straßenwesen, Ausgabe 2012
- [11] Geltende DIN-Normen

3 **Standortsituation**

3.1 Vorhaben und Geländesituation

Der geplante Gewerbe- und Industriepark soll auf dem ehemaligen Gelände der Zollernalbkaserne etwa 2 km östlich von Meßstetten entstehen. Der nachstehende Übersichtslageplan zeigt den Standort der geplanten Erschließungsfläche (Auszug aus Daten- und Kartendienst der LUBW).

Bild 1: Lage der Erschließungsfläche (rot gekennzeichnet)

Das Vorhaben umfasst die Anlage mehrerer Erschließungsstraßen sowie die Verlegung von Ver- und Entsorgungsleitungen. In dem Erschließungsgebiet befinden sich derzeit Straßen und Versorgungsleitungen sowie zahlreiche Gebäude, die im Zuge der Erschließung zurückgebaut werden sollen. Nach Aussage des Planers orientieren sich die geplanten Kanaltiefen an den vorhandenen Kanälen. Damit werden Einbindetiefen von bis zu 5,9 m unter OK Straße erforderlich.

Die Anbindung der des Erschließungsgebietes erfolgt im Nordwesten über die Geissbühlstraße.

Südwestlich der Erschließungsfläche und im südlichen Bereich sind Regenrückhaltebecken (RRB) geplant.

Die Baufläche befindet sich auf einer Hochebene der Schwäbischen Alb. Die Geländehöhen im Baugebiet bewegen sich etwa zwischen 902 und 921 m NN.

Der Standort befindet sich nach der Karte der Frosteinwirkungszonen in der Frostzone II bis III. Es ist mit einer max. Frosteindringtiefe bis 1,2 m zu rechnen.

Das Untersuchungsgelände liegt innerhalb der Wasserschutzgebietszonen Zone III und IIIA mit der Bezeichnung WSG Quellen im Schmiechtal, WSG-Nr-Amt 417.230.

Geologie und Hydrogeologie

Der Untergrund des Untersuchungsgebietes wird aus den Massenkalken der Oberjura-Schwammkalkfazies gebildet [6]. Dieser besteht aus z. T. mergeligen, ungeschichteten bis undeutlich geschichteten Kalksteinen. Die Mächtigkeit im Planungsgebiet wird mit >100 m angenommen. An der Oberfläche werden die Kalksteine von einer Verwitterungsschicht - "Felsauflockerungszone" - überdeckt.

Die hydrologischen Verhältnisse sind durch die Morphologie und den Verlauf der Vorflut bestimmt. Das Areal gehört zum Einzugsgebiet des Neckars. Das Baugelände entwässert über den Meßstetter Talbach, welcher seine Wässer über die Eyach dem Neckar zuführt.

Geschlossenes Grundwasser wird erst in größeren Tiefen erwartet. Die Massenkalkformation ist als Karstgrundwasserleiter mit hoher bis mittlerer Durchlässigkeit und sehr hoher bis hoher Ergiebigkeit eingestuft.

4 Feld- und Laboruntersuchungen

Um Kenntnis über die geologischen und hydrogeologischen Verhältnisse im Untergrund des Geländes zu erhalten, wurden am 13.10.2022 neun Baggerschürfungen ausgeführt, die bis max. 3,0 m unter Geländeoberkante (=GOK) reichten. Ergänzend wurden am 14. und 15.11.2022 durch die Fa. GEO-BOHRTECHNIK aus Blaustein zwei Kernbohrungen (KB nach DIN EN ISO 22475-1) bis max. 7,2 m Tiefe unter GOK abgeteuft. Außerdem wurden die Schürfe, die im Januar 2022 für die Versickerungsversuche angelegt wurden, für die Baugrundbeurteilung mit herangezogen [5].

Die Schurf- und Bohransatzpunkte wurden durch das Institut Dr. Haag vorgeschlagen und durch das Planungsbüro Mayer Ingenieur hinsichtlich Versorgungsleitungen freigegeben. Aufgrund von vorhandener Leitungen im Untergrund mussten die Schürfe H, SCH I und SCH J versetzt werden und liegen daher nicht auf der geplanten Erschlie-Bungsstraße.

Die Schurfpunkte A bis K und die Bohransatzpunkte wurden durch das Ingenieurbüro für Vermessung Czerwenka nach Höhe und Lage eingemessen. Die Ansatzhöhen der Schürfe SV 1 bis SV 7 wurden interpoliert. Die Ansatzpunkte aller Aufschlüsse sind im Lageplan der Anlage 1 dargestellt. In folgender Tabelle sind die durchgeführten Felduntersuchungen mit Höhenangaben zusammengefasst.

Tabelle 1: Zusammenstellung der Felduntersuchungen

Aufschluss	NN-Höhe	Teufe	Bemerkung
Auisciliuss	Ansatzpunkt	unter GOK	benierkung
SCH A	906,526 mNN	2,2 m	Wiesenfläche, neben bestehendem/geplantem Wendehammer, kein Schurffortschritt
SCH B	921,410 mNN	0,95 m	Wiesenfläche neben bestehender/geplanter Stra- ße, Abbruch da Beton in Schurfsohle, eventuell Kabeltrasse
SCH D	920,191 mNN	2,0 m	Wiesenfläche neben bestehender/geplanter Stra- ße, kein Schurffortschritt
SCH E	907,939 mNN	1,7 m	Wiesenfläche neben bestehender/geplanter Stra- ße, kein Schurffortschritt

Tabelle 1. Zusammenstellung der Felduntersuchungen					
Aufschluss	NN-Höhe	Teufe	Bemerkung		
Auisciliuss	Ansatzpunkt	unter GOK			
SCH G	909,5 mNN (interpoliert)	1,0 m	Böschung neben bestehendem Hohlweg, kein Schurffortschritt		
SCH H	902,223 mNN	3,0 m	Ackerfläche, Abbruch, kein Sondierfortschritt		
SCHI	906,198 mNN	2,7 m	Wiesenfläche neben geplantem RRB, kein Schurffortschritt		
SCH J	907,319 mNN	2,0 m	landwirtschaftl. genutzte Wiesenfläche neben geplanter Straße, kein Schurffortschritt		
SCH K	905,779 mNN	2,0 m	landwirtschaftl. genutzte Wiesenfläche, in geplanter Straße, kein Schurffortschritt		
КВ С	918,411 mNN	7,2 m	Kreuzungsbereich bestehende/geplante Straße, kein Sondierfortschritt		
KB F	907,799 mNN	6,2 m	Betonfläche bei geplantem Wendehammer, kein Schurffortschritt		
SV 1	902,8 mNN (interpoliert)	1,6 m	landwirtschaftl. genutzte Wiesenfläche, kein Schurffortschritt		
SV 2	898,8 mNN (interpoliert)	1,6 m	landwirtschaftl. genutzte Wiesenfläche neben geplantem RRB, kein Schurffortschritt		
SV 3	898,8 mNN (interpoliert)	1,6 m	landwirtschaftl. genutzte Wiesenfläche neben geplantem RRB, kein Schurffortschritt		
SV 4	899,0 mNN (interpoliert)	1,9 m	landwirtschaftl. genutzte Wiesenfläche neben geplantem RRB, kein Schurffortschritt		
SV 5	909,4 mNN (interpoliert)	1,3 m	Wiesenfläche neben bestehender/geplanter Stra- ße, kein Schurffortschritt		
SV 6	914,3 mNN (interpoliert)	2,0 m	Wiesenfläche neben bestehender/geplanter Stra- ße, kein Schurffortschritt		
SV 7	918.7 mNN (interpoliert)	1.7 m	Wiesenfläche neben bestehender/geplanter Stra-		

Die ingenieurgeologische Ansprache der angetroffenen Schichten erfolgte auf der Grundlage der DIN EN ISO 14688-1 und DIN EN ISO 14689. Die grafische Darstellung der Aufschlussergebnisse in Form von Schurf- und Bohrprofilen enthalten die Anlagen 2.1 bis 2.6. Bilder der Schürfe finden sich in der Fotodokumentation der Anlage

1,7 m

ße, kein Schurffortschritt

Von den Auffüllungen und den anstehenden Böden wurden Bodenmischproben gewonnen und dem chemischen Labor AGROLAB Labor GmbH zur Deklarationsanalyse nach VwV Boden [9] überlassen.

Tabelle 2: Zusammenstellung der chemischen Laboruntersuchungen

918,7 mNN (interpoliert)

Probe Nr.	Probenart	Tiefe < GOK	Analytik
MP 1 (SCH H)	Auffüllung	0,7 m – 1,7m	VwV Boden
MP 2 (SCH A, SCH D)	Verwitterungsschutt	0,4 m – 2,0m	VwV Boden
MP 3 (KB C, KB F)	Verwitterungsschutt	1,0 m – 3,0m	VwV Boden
MP 4 (SCH H, SCH I)	Verwitterungsschutt	1,0 m – 3,0m	VwV Boden
MP 5 (SCH J, SCH K)	Verwitterungsschutt	0,3 m – 2,0m	VwV Boden
MP 6 (KB C, KB F)	Massenkalk	1,9 m – 5,0m	VwV Boden

5 Zusammenfassung der Aufschlussergebnisse

5.1 Beschreibung der Bodenschichten

Der Schichtenaufbau wird auf Grundlage der durchgeführten Baugrundaufschlüsse beschrieben. In den bebauten Bereichen wurden unter Asphalt- und Betonbefestigungen bzw. unter dem Oberboden diverse Auffüllungen in variierenden Mächtigkeiten angetroffen. Unter den Auffüllungen bzw. unter der Oberbodenabdeckung in den Wiesenflächen folgten die "Alblehme" und/oder die "Felsauflockerungszone" der Massenkalke. Die Massekalke konnten nur mit den Kernbohrungen in Tiefen von 2,0 m und 5,0 m aufgeschlossen werden.

Schicht 1a: Asphaltdecke mit Tränkschotter

Mit der KB C in der Geißbühlstraße wurde die Asphaltdecke mit einer Stärke von ca. 10,5 cm durchfahren. Der Asphaltbohrkern setzte sich aus drei Schichten zusammen: ca. 2,5 cm Asphaltdeckschicht, ca. 3,5 cm Asphaltbinderschicht, ca. 3,5 cm Tränkschotter. Der Tränkschotter zeigte einen auffälligen Geruch, der auf teerhaltige Bestandteile hinweist. Detaillierte Untersuchungen des vorhandenen Straßenaufbaus wurden im Juli/August 2021 ausgeführt, und sind in der Unterlage [4] beschrieben und ausgewertet.

Bild 2: Asphaltkern aus der KB C

Schicht 1b: Auffüllungen

Als oberste Schicht wurde mit KB F eine 40 cm starke Betonbefestigung aufgeschlossen. Unter den Oberflächenbefestigungen in den Bohrungen bzw. unter der Oberbodenabdeckung in den Schürfen SV 6 und SCH B bis SCH E sowie SCH H und SCH I wurden diverse Auffüllungen in variierenden Mächtigkeiten angetroffen (siehe Tabelle 3).

Tabelle 3: Mächtigkeiten und UK der Auffüllungen

Aufschluss	Mächtigkeiten der Auffüllungen in m	UK Auffüllung in m unter GOK	UK Auffüllung in mNN
SCH B	0,75	0,95	920,46
SCH D	0,8	1,0	919,19
SCH E	1,2	1,5	906,44

Institut Dr. Haag GmbH Projekt Nr. 62702

Tabelle 3: Mächtigkeiten und UK der Auffüllungen

Aufschluss	Mächtigkeiten der Auffüllungen in m	UK Auffüllung in m unter GOK	UK Auffüllung in mNN
SCH H	1,4	1,7	900,52
SCHI	0,7	1,0	905,20
KB C	1,35	1,5	916,91
KB F	1,5	1,9	906,80
SV 6	1,2	1,4	912,90

Die Auffüllungen setzten sich hauptsächlich aus ortsständigen Böden in Form von Steinen und Kiesen mit Schluff- und Tonanteilen zusammen. Möglicherweise sind lokal Blöcke enthalten. Zum Teil waren Fremdbestandteile, wie Ziegel- und Betonbruch sowie Reste von Asphaltschichten enthalten. Zum größten Teil waren die Auffüllungen sensorisch unauffällig.

In SCH H bestanden die Auffüllungen aus dunkelbraunem und schwarzgrauem Lehm, der einen leicht auffälligen Geruch aufwies. Eine Probe der Auffüllung wurde abfallanalytisch untersucht (siehe Kapitel 7).

Tabelle 4: Klassifizierung / Figenschaften Schicht 1b – Auffüllung

Schichtbeschreibung und Bautechnische Klassifizierung		
Bodengruppe (DIN 18196)	GU, GU*, TL, X, Y	
Kurzzeichen (DIN EN ISO 14688-1)	sicoGr, grclSi, grsiCo, Bo	
Boden-/Felsklasse (DIN 18300:2012-09)	BKL 3 – BKL 5 (leicht - mittelschwer lösbarer Boden)	
Homogenbereich (DIN 18300:2015-08)	Homogenbereich A (siehe Tabelle 10)	
Frostempfindlichkeitsklasse (ZTV E-StB)	F 1 – F 3 (nicht – sehr frostempfindlich)	

Schicht 2: Mutterboden

Außerhalb der bestehenden Verkehrsflächen wurde als oberste Schicht ein Oberboden mit Mächtigkeiten variierenden zwischen etwa 10 cm und 40 cm angetroffen. Der Oberboden war als toniger und schwach sandiger Schluffboden mit Kies- und Steinbeimengungen ausgebildet.

Tabelle 5: Klassifizierung / Eigenschaften Schicht 2 – Mutterboden

Schichtbeschreibung und Bautechnische Klassifizierung		
Bodengruppe (DIN 18196)	OU, OH	
Kurzzeichen (DIN EN ISO 14688-1)	sa'gr'coclSi, sa'grcl'coSi	
Konsistenz/Lagerung	weich - steif, steif	
Boden-/Felsklasse (DIN 18300:2012-09)	BKL 1 (Oberboden)	
Homogenbereich (DIN 18300:2015-08)	Homogenbereich B (siehe Tabelle 5)	
Frostempfindlichkeitsklasse (ZTV E-StB)	F 3 (sehr frostempfindlich)	

Schicht 3: Felsauflockerungszone (Alblehm und Verwitterungsschutt)

In dieser Zone liegen einzelne Kluftkörper bzw. Gesteinsbruchstücke vor, die in einer tonig-schluffigen Matrix schwimmen. Die einzelnen Bruchstücke weisen Kantenlängen von <10 bis >100 cm auf. Es handelt sich um aufgelöste Schichten der unterlagernden Jura-Kalksteine. Die anteilsmäßige Zusammensetzung des Stein-Schluff-Gemisches war lokal unterschiedlich. In den Schürfen SV 1 bis 4 und SV 7 sowie SCH D standen unter der Oberbodenabdeckung bzw. den Auffüllungen zunächst Tone und Schluffe von bräunlicher bis bräunlichgrauer Farbe mit variierenden Steinanteilen an. Diese Schicht wies nur geringe Mächtigkeiten auf (0,4 m und 1,3 m) und wurde als "Alblehm" - Schicht 3a - angesprochen. Sie reichte bis max. 1,7 m Tiefe. In SV 7 wurde bis zur Aufschlusstiefe eine mächtige, nahezu steinfreie Schicht aus zähem, hochplastischem Ton angetroffen. Die bindigen Anteile lagen meist in steifer und weicher bis steifer Konsistenz vor.

Mit zunehmender Tiefe gehen die Alblehme in einen lehmigen Verwitterungsschutt bzw. Blockschutt über (Felsauflockerungszone) - Schicht 3b -, in dem bis zu kopfgro-Be Kalksteinstücke in schluffig-toniger Matrix vorliegen. Bereichsweise fehlte der Alblehm komplett, hier wurde der Verwitterungs- bzw. Blockschutt bereits unter dem Oberboden bzw. den Auffüllungen angetroffen.

Grundsätzlich lässt aber mit zunehmender Tiefe der Verwitterungseinfluss nach, wobei auch der Schluffanteil zwischen den einzelnen Bruchstücken geringer wird. Der Übergang zu den durchgehend anstehenden Kalksteinschichten der Schicht 4 ist mehr oder weniger kontinuierlich. Die Grenze wird in etwa da gezogen, wo der Bagger den Boden nicht mehr oder nur noch mit sehr hohem Aufwand lösen konnte (etwa max. 3 m unter GOK). In den Bohrungen reichte die Schicht bis 1,9 m bzw. 5,0 m unter GOK. Nach früheren Erkundungen können diese Deckschichten jedoch lokal auch Mächtigkeiten von bis zu ca. 10 m erreichen [3]. Die aufgeschlossenen Mächtigkeiten sowie die Unterkante (UK) der Schicht sind in folgender Tabelle zusammengefasst.

Tabelle 6: Oberkante Massenkalkstein in den Aufschlüssen

Auf- schluss	Mäch- tigkeit	UK Schicht 3 in m unter GOK	UK Schicht 3 in mNN	Auf- schluss	Mäch- tigkeit	UK Schicht 3 in m unter GOK	UK Schicht 3 in mNN
SCH A	1,8	2,2	904,33	KB F	0,9	1,9	905,90
SCH D	1,0	2,0	918,19	SV 1	1,4	1,6	901,20
SCH E	0,2	1,7	906,44	SV 2	1,3	1,6	897,20
SCH G	0,7	1,0	908,50	SV 3	1,2	1,6	897,20
SCH H	1,3	3,0	899,22	SV 4	1,5	1,9	897,10
SCHI	1,7	2,7	903,50	SV 5	1,2	1,3	908,10
SCH J	1,7	2,0	905,32	SV 6	0,6	2,0	912,30
SCH K	1,7	2,0	903,78	SV 7	1,4	1,7	917,0
KB C	3.5	5.0	913.41				

Schichtbeschreibung und Bautechnische Klassifizierung		
Bodengruppe (DIN 18196)	TL, TM, TA, GU*, GU, X, Y	
Kurzzeichen (DIN EN ISO 14688-1)	clgrcoSi, clSi, si'cl'grCo/Bo, Co/Bo	
Konsistenz/Lagerung	steif, weich - steif	
Boden-/Felsklasse (DIN 18300:2012-09)	BKL 4 – BKL 6 (mittelschwer – leicht lösbarer Fels)	
Homogenbereich (DIN 18300:2015-08)	Homogenbereich C (siehe Tabelle 10)	
Frostempfindlichkeitsklasse (ZTV E-StB)	F 1 - F 3 (sehr frostempfindlich)	
Bautechn	ische Eignung	
als Planum	bedingt geeignet	
als Rohrauflager	geeignet	
als Grabenrückverfüllung	nach Zerkleinerung geeignet	

Schicht 4: Unterer Massenkalk (joMKu)

Mit den Bohrungen KB C und KB F wurden die Massenkalke ab etwa 5,0 m bzw. 1,9 m unter GOK angeschnitten. Der Fels stellte sich als verwitterter bis angewitterter weißgrauer Kalkstein mit lehmigen Kluftfüllungen dar. Die Schichten sind plattig bis bankig abgesondert und z. T. stark geklüftet. Die Mächtigkeit im Planungsgebiet wird mit >100 m angenommen. Der Bagger konnte in diese Schicht nur max. 20 cm eindringen. Die weißgrauen Kalksteine zeigen eine unterschiedlich stark ausgeprägte Klüftung. Die Schichten sind zumindest bereichsweise zerbrochen und in einzelne Kluftkörper aufgespalten, die aber fest im Verband liegen und nur durch wenige mm starke schluffige Kluftfüllungen getrennt sind.

Grundsätzlich sind die anstehenden Massenkalke besonders anfällig für Verkarstung, weshalb sich ihrem Verbreitungsgebiet zahlreiche Höhlen, aber auch sonstige Karsterscheinungen wie Dolinen, abflusslose Senken (Karstwannen), Bach-/Flussversickerungen etc. finden. Auch im Planungsgebiet wurden bereits Karsterscheinungen nachgewiesen [3]. Die Karsthohlräume sind oft mehr oder weniger stark mit Gesteinsschutt, Lehm und fluviatilem Sand gefüllt.

Auch am Standort der ehemaligen Zollernalb-Kaserne wurden bei früheren Untersuchungen bereits Karsterscheinungen nachgewiesen [3]. Die Karsthohlräume sind oft mehr oder weniger stark mit Gesteinsschutt, Lehm und fluviatilem Sand gefüllt.

Nach Erkundungen an anderen Stellen im Bereich der Zollernalb-Kaserne ist uns bekannt, dass die anstehenden Kalksteine lokal von unterschiedlicher Qualität sind. Es sind Bereiche mit sehr mürben, teils zersetzten, hellgrauen Kalksteinen vorhanden, die von hellgrünlichgrauen Mergelbändern durchsetzt sind (Qualität A). In anderen Bereichen stehen sehr harte, nur schwach verwitterte Kalksteine von hoher Festigkeit an (Qualität B). Die Oberkanten der Schicht 4 sind in folgender Tabelle zusammengefasst.

INSTITUT DR. HAAG

Baugrund

BV: Erschließung Interkommunaler Industrie- und Gewerbepark Zollernalb

Tabelle 8: Oberkante Massenkalkstein in den Aufschlüssen

Auf- schluss	OK Massen- kalkstein in m unter GOK	OK Massen- kalkstein in mNN	Auf- schluss	OK Massen- kalkstein in m unter GOK	OK Massen- kalkstein in mNN
SCH A	2,2	904,33	KB C	5,0	913,41
SCH D	2,0	918,19	KB F	1,9	905,90
SCH E	1,7	906,44	SV 1	1,6	901,20
SCH G	1,0	908,50	SV 2	1,6	897,20
SCH H	3,0	899,22	SV 3	1,6	897,20
SCHI	2,7	903,50	SV 4	1,9	897,10
SCH J	2,0	905,32	SV 5	1,3	908,10
SCH K	2,0	903,78	SV 6	2,0	912,30

Tabelle 9: Klassifizierung / Figenschaften Schicht 5 – Unterer Massenkalk

Schichtbeschreibung und Bautechnische Klassifizierung		
Felsgruppe:	karbonatische Gesteine (KA)	
Verwitterungsgrad	verwittert, mit der Tiefe angewittert	
Festigkeit:	hart	
Schichtung / Klüftung:	bankig / mittel- bis weitständig	
Boden-/Felsklasse (DIN 18300:2012- 09)	BKL 6 – BKL 7 (leicht - schwer lösbarer Fels)	
Homogenbereich (DIN 18300:2015-08)	Homogenbereich D (siehe Tabelle 11)	
Bautechnische Eignung		
als Planum	geeignet	
als Rohrauflager	geeignet	
als Grabenrückverfüllung	nach Zerkleinerung geeignet, ggf. Wasserzugabe	

5.2 Einteilung in Homogenbereiche nach DIN 18300

Nach den aktuellen Normen DIN 18300:2015-08 (Erdarbeiten) und 18301:2015-8 (Bohrarbeiten) ist der Untergrund zur Beschreibung seiner Lösbarkeit in Homogenbereiche mit annähernd gleichartigen Eigenschaften zu unterteilen. Im vorliegenden Fall können Homogenbereich A (Schicht 1b), Homogenbereich B (Schicht 2), Homogenbereich C (Schicht 3), Homogenbereich D (Schicht 4) zu Grunde gelegt werden.

Tabelle 10: Homogenbereich Mineralböden

Eigenschaft	DIN/Norm	Homogenbereich A Schicht 1b	Homogenbereich B Schicht 2	Homogenbereich C Schicht 3
ortsübliche Bezeich- nung		ungebundene Tragschicht, Auffüllungen	Oberboden	Felsauflockerungszone, Alblehm, Verwitterungs- /Blockschutt
Bodengruppe	DIN 18196	GU, GU*, TL, X, Y	OH, OU	TL, TM, TA, GU*, GU, X, Y

Eigenschaft	DIN/Norm	Homogenbereich A Schicht 1b	Homogenbereich B Schicht 2	Homogenbereich C Schicht 3
Massenanteil Steine (>63 - 200 mm)	DIN EN ISO 14688-1	n. b., vermutlich, > 30 M% möglich	n. b., vermutlich, > 30 M% möglich	n. b., vermtl. > 40 M%
Massenanteil Blöcke (>200 - 630 mm)	DIN EN ISO 14688-1	n. b., vermutlich, > 10 M% möglich	nicht vorhanden	n. b., vermtl. > 20 M%
Massenanteil große Blöcke (>630 mm)	DIN EN ISO 14688-1	n. b., vermutlich, > 10 M% möglich	nicht vorhanden	n. b. vermtl. < 30 M%
Konsistenzzahl I₀	DIN EN ISO 17892-12	n. b., vermutlich, 0,5 bis 1,25		
Plastizitätszahl Ip	DIN EN ISO 17892-12	n. b., vermutlich, 10 bis 30 %	n. b., vermutlich, 10 bis 30 %	n. b., vermutlich, 20 bis 50 % nur bindiger Anteil
Wassergehalt w _n	DIN EN ISO 17892-1	n. b.	n.b.	n. b.
Dichte ρ	DIN 18125-2	1,8 - 1,9 g/cm³	1,6 - 1,7 g/cm³	n.b., vermutl. 1,8 - 2,0 g/cm³
undränierte Scherfes- tigkeit cu	DIN 18136	n.b., vermutl. 0 - 30 kN/m²	n.b., vermutl. 10 - 20 kN/m²	n.b., vermutl. 30 - 100 kN/m²
Organischer Anteil	DIN 18128	n. b., vermutl. < 5 %	·	
Korngrößenverteilung	DIN EN ISO 17892-4	fein- bis grobkörnig	fein- bis grobkörnig feinkörnig	
Frostempfindlich- keitsklasse		F1-F3	F 3	F2-F3

n. b. = nicht bestimmt, n. e. = nicht erforderlich

Tabelle 11: Homogenbereich Festgestein

Eigenschaft	DIN/Norm	Homogenbereich E
ortsübliche Bezeichnung		Untere Massenkalke, Jura
Benennung von Fels	DIN EN ISO 14689-1	Kalkstein
Dichte ρ	DIN 18125-2	2,0 – 2,4 g/cm ³
Verwitterung / Veränderung und Veränderlichkeit	DIN EN ISO 14689-1	verwittert - angewittert mäßig – nicht veränderlich
einaxiale Druckfestigkeit des Gesteins		n. b., vermutl. 50 – 200 N/mm²
Trennflächenabstand, Gesteinskörperform	Kluftanetande, end- bie Meiteta	

Charakteristische Boden-/Felskennwerte

Im Ergebnis der durchgeführten Untersuchungen sowie aus Erfahrungen mit vergleichbaren Böden/Fels aus der Umgebung lassen sich folgende Mittelwerte relevanter Boden- und Felskennwerte für die erdstatischen Berechnungen angeben:

Tabelle 12: Charakteristische Kennwerte

Baugrundschicht		Wichte, erdfeucht Yk	Reibungs- winkel φ _κ '	Kohäsion c _k ′	Verformungs- modul E _{v1}	
		kN/m³	٥	kN/m ²	MN/m ²	
Schicht 3: Felsauf-	Alblehm	18 – 19	20 – 25	7 – 10	5 – 8	
lockerungszone	Verwitterungs-/ Blockschutt	19 – 21	25 – 35	6 - 10	15 - 25	
Schicht 4: Massenkalk		21 – 24	30 – 35	10 -> 50 ¹⁾	50 - > 150 ¹⁾	

abhängig von der Gesteinsart und dem Verwitterungszustand

Wir weisen darauf hin, dass die Konsistenz der bindigen Böden stark von deren jeweiligem Wassergehalt abhängig ist. Vor allem in oberflächennahen, sowie temporär durchsickerten Bereichen kann der Wassergehalt und damit die Konsistenz des Bodens witterungsbedingt schwanken. Die oben beschriebenen Zustandsformen stellen aktuelle, zum Zeitpunkt der Erkundung angetroffene Zustände dar.

6.1 **Hydrologische Situation**

Die Beurteilung der Grundwasserverhältnisse stützt sich auf die im Zuge der Baugrunderkundung niedergebrachten Baggerschürfe und Bohrungen die bis max. 7,20 m unter GOK reichten.

Alle Schürfe und Bohrungen sanden bis zur Aufschlussendtiefe trocken. Mit geschlossenem Grundwasser wird erst in Größeren Tiefen gerechnet. Im Lockergestein kann überdies abhängig von den Untergrund- und Witterungsverhältnissen lokal zeitweise Schichtwasser auftreten. Für die angetroffenen natürlichen Untergrundschichten werden in nachstehender Tabelle Durchlässigkeitsbeiwerte auf der Grundlage von Erfahrungen und Literaturwerten angegeben.

Tabelle 13: Durchlässigkeitsbeiwerte der Böden / des Festgesteins

Baugrundschicht	Durchlässigkeitsbeiwert k	Bewertung			
Schicht 3a (Alblehm)	10 ⁻⁸ m/s bis 10 ⁻⁷ m/s	schwach bis sehr schwach durchlässig			
Schicht 3b (Verwitterungs-/ Blockschutt)	10 ⁻⁵ m/s bis 5 x 10 ⁻⁴ m/s	durchlässig			
Schicht 4 (Massenkalk)	10 ⁻⁵ m/s bis 10 ⁻⁴ m/s ¹⁾	durchlässig			

¹⁾ abhängig von der Kluftausbildung

Abfallanalytische Untersuchungen

Die entnommenen Mischproben der Auffüllung (MP 1), der anstehenden Verwitterungsböden (MP 2 bis MP 5) und der Massenkalke (MP 6) wurden nach den Vorgaben der VwV Boden [9] untersucht. Die Ergebnisse sind im Vergleich zu den Zuordnungswerten nach VwV Boden in der Anlage 6 zusammengefasst. Für die Bewertung wird die Kategorie "Lehm/Schluff" zu Grunde gelegt. Die Originalanalytik des chemischen Labors liegt als Anhang 1 bei.

Auffüllungen (Schicht 1) – MP 1

Da es sich bei den untersuchten Auffüllungen vorwiegend um gemischtkörnige Böden mit Fremdbestandteilen handelt wurde für die Einstufung die Kategorie "Lehm/Schluff" zu Grunde gelegt. Die Probe MP 1 der Auffüllung aus SCH H wies weder im Feststoff noch im Eluat Überschreitungen der Zuordnungswerte für Z 0 auf. Bei den anfallenden Auffüllungen im Bereich von SCH H handelt es sich somit voraussichtlich um Z 0-Material.

Felsauflockerungszone (Alblehm/Verwitterungsschutt-Schicht 3) – MP 2 bis MP 5

Für die meisten Mischproben aus den natürlich anstehenden Felsauflockerungszone/Verwitterungsböden (MP 2, MP 3, MP 5) werden die Z 0-Zuordnungwerte für die Kategorie Lehm/Schluff nach VwV Boden eingehalten. Beim Großteil der anfallenden natürlich anstehenden Verwitterungsböden handelt es sich somit voraussichtlich um Z 0-Material. Das Z 0-Material kann uneingeschränkt verwertet wer-

Lediglich die Probe MP 4 (SCH I, SCH H) wies Erhöhungen der Schwermetalle Chrom, Nickel, Thallium auf, wobei die Zuordnungswerte für Z 1.1 eingehalten werden. Das Verwitterungsmaterial aus diesen Bereichen kann somit als Z 1.1-Material eingestuft werden. Vermutlich handelt es sich bei den erhörten Schwermetallgehalten um geogene Hintergrundbelastungen.

Massenkalk (Schicht 4) - MP 6

Für Mischprobe MP 6 (Massenkalk) werden die Z 0-Zuordnungwerte für die Kategorie Sand nach VwV Boden eingehalten. Bei den anfallenden natürlich anstehenden Massenkalken handelt es sich voraussichtlich um Z 0-Material. Das Material kann somit uneingeschränkt verwertet werden.

Die abfalltechnischen Bewertungen des anfallenden Aushubbodens erfolgten stichprobenartig anhand von Mischproben, die aus Einzelproben des Schurf-/Bohrgutes hergestellt wurden. Die Deklarationen sind daher gen/Erstbewertungen zu betrachten.

Ggf. werden während der Baumaßnahme Haufwerksbeprobungen bzw. Rasterbeprobungen und weitere Analysen erforderlich.

Empfehlungen zum Kanalbau 8

8.1 Baugrund im Bereich der Kanalsohle

Nach Aussage des Planers orientieren sich die geplanten Kanaltiefen an den vorhandenen Kanälen. Damit werden Einbindetiefen von bis zu 5,9 m unter OK Straße erforderlich. Für die Bereiche ohne bestehende Kanäle (südliches Erschließungsgebiet) liegen bisher keine Planungsunterlagen vor.

In den Grabensohlen wird nach den Erkundungsergebnissen unter den Auffüllungen (Schicht 1) und der meist geringmächtigen Felsauflockerungszone (Schicht 3) größtenteils schon der massive Massenkalk (Schicht 4) angetroffen.

Grabenherstellung 8.2

Mit dem Grabenaushub sind oberflächennah Böden der Klasse 3 bis 6 nach DIN 18300:2012-09 auszuheben. Größtenteils setzt bereits ab Tiefen zwischen 1,5 m und 2 m Tiefe unter GOK der massive Massenkalk ein, welcher der Klasse 6 bis 7 nach DIN 18300:2012-09 zugeordnet wird.

Die Leitungen können in offener Bauweise verlegt werden. Bei Grabentiefen bis 1,25 m darf senkrecht abgeschachtet werden.

Bei der Grabenherstellung ist ein lastfreier Schutzstreifen einzuhalten. Bei Baufahrzeugen bis 12t beträgt die Breite des Schutzstreifens 1 m, bei Baumaschinen über 12t bis 40t Gesamtgewicht beträgt die Breite 2 m bis zur Böschungskante.

Bei größeren Verlegtiefen müssen die Grabenwände abgeböscht werden. In den Auffüllungen sind die Böschungsneigungen auf 45° zu begrenzen. Im Alblehm und Verwitterungsböden können Böschungsneigungen bis 60° gemäß DIN 4124 zugelassen werden. In den Massenkalken sind Böschungsneigungen bis max. 80° möglich.

Zur Begrenzung der Aushubmassen kann ein Grabenverbau hergestellt werden. Die Empfehlungen der DIN 4124 sind hierbei zu berücksichtigen. Die Alblehme und Verwitterungsböden werden aufgrund der Kornzusammensetzung und der Zustandsform als vorübergehend standfest eingeschätzt. Der Grabenverbau kann hier mit Hilfe von Verbauelementen im Einstellverfahren realisiert werden.

Es muss in jeder Bauphase gewährleistet sein, dass die Verbauwände unmittelbar an den Erdwänden anliegen und Setzungen im Boden weitgehend vermieden werden. Verbaugeräte sind lückenlos aneinanderzureihen. Die Wandsicherung mit Verbaugeräten muss bis zur Grabensohle bzw. bis zum Festgestein reichen. Die Stirnwände der Gräben sind entweder durch einen Verbau zu sichern oder abzuböschen.

Beim Rückbau des Verbaus in Verbindung mit der Grabenverfüllung ist zu beachten, dass nur Verbaugeräte oder Teile davon zurückgebaut werden dürfen, soweit sie durch die Verfüllung entbehrlich geworden sind.

8.3 Rohrauflager und Grabenverfüllung

In den Grabensohlen werden je nach Verlegtiefe hauptsächlich die Massenkalke (Schicht 4) und untergeordnet die Verwitterungsböden (Schicht 3) angeschnitten.

Diese Schichten weisen ausreichende Tragfähigkeiten auf. Hier werden voraussichtlich keine Untergrundverbesserungen notwendig. Ggf. können die Verwitterungsböden bei stark lehmiger Ausbildung lokal aufgeweicht sein. In diesem Fall wird ein Boden-

Institut Dr. Haag GmbH

Projekt Nr. 62702

austausch von 20 cm durch verdichtungsfähiges Material (Sand, Kies-Sand oder Brechsand-Splitt) empfohlen.

Es wird empfohlen, eine untere Bettungsschicht aus verdichtungsfähigem Material (Sand, Kies-Sand oder Brechsand-Splitt) mit einer Mindestdicke von 100 mm, im Fels von 150 mm vorzusehen. Die Rohrleitungen müssen gleichmäßig über die ganze Rohrschaftlänge aufliegen.

Das Auflager muss so verdichtet werden, dass entsprechend den Vorschriften der ZTV E-StB ein Verdichtungsgrad von DPr > 97 % erreicht wird. An den Verfüllboden im Bereich der Leitungszone werden die gleichen Verdichtungsanforderungen gestellt. Als Verfüllboden im Bereich der Leitungszone ist abgestufter, grobkörniger Boden zu verwenden. Der Einbau des Verfüllbodens hat lagenweise zu erfolgen, wobei Schütthöhen von 20 cm - 30 cm im Leitungszonenbereich empfohlen werden.

In der Verfüllzone oberhalb der Leitungszone ist der Aushubboden bei bautechnischer Eignung gemäß ZTV E-StB wieder einzubauen.

Bei Wiederverwendung der bindigen Aushubböden (Alblehm) wird ein erhöhter Einbau- und Verdichtungsaufwand erforderlich. Zur Verbesserung der Verdichtungseigenschaften wird, abhängig von der Konsistenz der lehmigen Böden, während der Bauzeit die Zugabe von Bindemittel (0,5 bis 1 Masse-%) zur Verbesserung der Einbau- und Verdichtungseigenschaften vorgeschlagen (vorbehaltlich einer Eignungsprüfung).

Wird der Verwitterungsboden (Blockschutt) und der Massenkalkstein durch Fräsen gelöst, kann das Fräsgut für die Hauptverfüllung verwendet werden. Es wird jedoch auf den hohen Anteil an Steinen und Blöcken im Aushubmaterial hingewiesen. Bei einer Wiederverwendung erfordert dies einen hohen Einbau bzw. Verdichtungsaufwand bzw. eine Zerkleinerung oder Separierung größerer Gerölle.

Der zwischengelagerte Boden ist durch geeignete Maßnahmen nach ZTV E-Stb einbaufähig zu halten.

Für die fein- und gemischtkörnigen ortständigen Böden (Schlämmkornanteil > 15%) wird nachstehender Verdichtungsgrad gefordert:

- D_{Pr} ≥ 97 % OK Leitungszone bis OK Planum

Alternativ kann die Verfüllung mit grob- bis gemischtkörnigen Lieferböden erfolgen. Für die Hauptverfüllung aus grob- bis gemischtkörnigen Böden (Schlämmkornanteil < 15%) sind nach ZTV E-StB nachstehende Verdichtungswerte nachzuweisen:

- D_{Pr} ≥ 98 % OK Leitungszone bis 0,50 m unter OK Planum
- D_{Pr} ≥ 100 % Planum bis 0,50 m Tiefe

Das Verdichten darf im Bereich bis 1 m über Rohrscheitel nur mit leichtem Verdichtungsgerät und darüber mit mittelschwerem Verdichtungsgerät ausgeführt werden. Es ist zu gewährleisten, dass die Rohrleitung durch den Verdichtungsvorgang nicht in ihrer Lage verschoben oder gar beschädigt wird.

8.4 Bautechnische Hinweise

Der offene Graben ist ständig wasserfrei zu halten, um das Ausrichten der Rohrleitungen, insbesondere den fachgerechten Einbau der Bettung, Seitenverfüllung und Abdeckung zu ermöglichen. Aufgrund der guten Durchlässigkeit der anstehenden Böden/Fels wird eine Wasserhaltung voraussichtlich nicht notwendig.

Kornwestheim bei Stuttgart

Empfehlungen zum Verkehrswegebau 9

9.1 **Erdplanum**

Empfehlungen zum Verkehrswegebau in den bestehenden Straßen sind bereits in unserem Bericht vom Juli 2021 [4] enthalten.

Die Empfehlungen in vorliegendem Bericht beziehen sich lediglich auf die geplanten Straßen außerhalb des 2021 bereits untersuchten Bestandes (Bereich der Schürfe SCH G bis SCH K).

Unterlagen zum geplanten Gradientenverlauf der Erschließungsstraßen liegen uns bisher nicht vor. Wir nehmen an, dass sich die Gradiente weitestgehend am vorhandenen Gelände orientiert.

In den straßenbautechnisch relevanten Tiefen lagern unter dem Mutterbodenhorizont lokal Auffüllungen, die bis zu 1,7 m unter GOK reichen (SCH H, SCH I). Größtenteils stehen im Planum voraussichtlich die steinigen Verwitterungsböden an (SCH J, SCH K). Im Hohlweg (SCH G) ist bereits im Planum mit Fels (Schicht 5) zu rechnen. Lokal ist im Planum mit den steifen Alblehmen (Schicht 3) in geringen Mächtigkeiten zu rechnen.

Für das Erdplanum ist gemäß RStO 12 ein Verformungsmodul von E_{v2} ≥ 45 MPa dauerhaft erforderlich.

In den lehmigen bis steinigen Verwitterungsböden (Schicht 3) wird ein Verformungsmodul von E_{v2} ≥ 45 MPa vermutlich nicht flächendeckend erreicht. Es sind daher bereichsweise bodenverbessernde Maßnahmen vorzusehen.

Für die Verkehrsflächen sollte je nach Lehmanteil und Konsistenz ein Unterbau von mind. 20 bis 30 cm (grob- bis gemischtkörniger Boden z.B. Mineralgemische 0/100 mm) vorgesehen werden, um die geforderte Tragfähigkeit des Planums zu erreichen.

Die endgültigen Austauschstärken sind mit Testfeldern in Verbindung mit statischen Lastplattendruckversuchen nach DIN 18134-300 festzulegen. Für den Unterbau wird nach ZTV E-StB ein Verdichtungsgrad von D_{Pr} ≥ 98% gefordert.

In den Massenkalken (Schicht 4) wird ein Verformungsmodul von E_{v2} ≥ 45 MPa erreicht. Hier sind keine bodenverbessernden Maßnahmen notwendig.

9.2 Straßenoberbau

Dem Gutachter liegen keine Angaben bezüglich der vorgesehenen Belastungsklasse für die Erschließungsstraßen vor. In Anlehnung an Unterlage [4] wird die Belastungsklasse Bk3,2 zugrunde gelegt.

Das Planum kommt entsprechend den Erkundungsergebnissen in Böden der Frostempfindlichkeitsklasse F 2 bis F 3 nach ZTV E-StB 2017 zu liegen. Abhängig von der Belastungsklasse ergibt sich demnach nachstehender Gesamtaufbau:

Tabelle 14: Mindestdicke des frostsicheren Oberbaus nach RStO 12

Belastungsklasse	Bk3,2 - Bk1,0			
Ausgangswert F 3 - Boden	60 cm			
Frostzone III	± 15 cm			
keine besonderen Klimaeinflüsse	± 0 cm			
kein Grund- oder Schichtwasser bis in eine Tiefe von 1,5 m unter Planum	± 0 cm			
Geländehöhe bis Damm ≤ 2,0 m	± 0 cm			
Entwässerung der Fahrbahn und Randbereiche über Rinnen bzw. Abläufe und Rohrleitungen	- 5 cm			
Mindestdicke des frostsicheren Straßenaufbaus	70 cm			

Der Straßenoberbau sollte nach Tafel 1 (Bauweisen mit Asphaltdecke für Fahrbahnen auf F 2- und F 3- Untergrund/Unterbau) der RStO 12 festgelegt werden.

Frostschutzschichten sollten aus einem güteüberwachtem, weitgestuften Schotter-Splitt-Sand- Gemisch mit einer Kornzusammensetzung von 0/45 bis 0/56 mm bestehen. Sie müssen so weit verdichtet werden, dass nach ZTV SoB-StB 04 ein Verformungsmodul E_{v2} von 120 MPa (Bk3,2 - Bk1,0) bzw. E_{v2} von 100 MPa (Bk0,3) an der Oberfläche nachgewiesen werden kann. Das Verhältnis E_{v2}/E_{v1} darf als Nachweis einer ausreichenden Verdichtung der Frostschutzschicht den Wert von 2,2 (Bk3,2 -Bk1,0) nicht überschreiten.

- Gehwege

Für Gehwege sollte ein Oberbau gemäß Tafel 6 der RStO 12 (Bauweisen für Rad- und Gehwege auf F 2- und F 3-Untergrund/Unterbau) festgelegt werden. Nach den Vorgaben der RStO 12 beträgt die Dicke des frostsicheren Oberbaues bei frostempfindlichen Böden mindestens 30 cm.

Für das Planum der Gehwege sind ebenfalls Bodenverbesserungen (wie vorn beschrieben) notwendig, um die Tragfähigkeitsanforderungen $E_{v2} \ge 45$ MPa zu erfüllen.

9.3 **Bautechnische Hinweise**

Die angetroffenen Alblehme sind als wasser- und bewegungsempfindlich einzustufen. Eine übermäßige mechanisch-dynamische Beanspruchung hat eine Reduzierung bzw. Verschlechterung der für den ungestörten Zustand geltenden bodenmechanischen Kennwerte und Eigenschaften zur Folge.

Durch einen auf die Witterungsverhältnisse abgestimmten Baumaschineneinsatz ist auf die bodenmechanische Sensibilität des Untergrundes zu reagieren. Während anhaltender Frostperioden und in Zeiten mit relativ hohem Niederschlagsgeschehen und geringer Verdunstung sollten die Erdarbeiten weitgehend eingeschränkt werden.

Das Erdplanum ist auf Höhe zu bringen und nach ZTV E-StB mit einem seitlichen Gefälle zur Entwässerung zu versehen. Es ist unverzüglich zu überbauen oder durch andere Schutzmaßnahmen gemäß ZTV E-StB vor Witterungseinflüssen zu schützen.

Da die lokal anstehenden Alblehme erfahrungsgemäß Wasserdurchlässigkeiten von $k \le 10^{-6}$ m/s aufweisen (Tabelle 13), sollte eine Planumsentwässerung angeordnet werden. Anfallendes Oberflächenwasser ist kontrolliert z.B. über Rinnen bzw. Abläufe und Rohrleitungen abzuleiten.

Für Einbau und Verdichtung gelten folgende Angaben:

- Einbau und Verdichtung aller Materialien muss lagenweise erfolgen. Die Einbaustärke der einzelnen Lagen ist der Tiefenwirkung des verwendeten Verdichtungsgerätes anzupassen.
- Es dürfen nur gut abgestufte, güteüberwachte Splitt-/Schottergemische eingebaut werden. Einbau und Verdichtung müssen umgehend nach Anlieferung auf der Baustelle in noch feuchtem Zustand unter Ausnutzung des vom Werk zugemischten und für die Verdichtung notwendigen optimalen Wassergehalts erfolgen, dabei sind Schotternester zu vermeiden.

Für sämtliche Erdarbeiten im Straßenbau gelten die einschlägigen Richtlinien der ZTVE-StB 2017, der ZTVA-StB 12 sowie der ZTV SoB-StB 2004 (Fassung 2007) und der ZTV Beton-StB 2007. Die Eigenüberwachungs- und Kontrollprüfungen müssen im dort beschriebenen Umfang durchgeführt werden.

10 Empfehlungen für die Regenrückhaltebecken

Im südlichen Bereich des Erschließungsgebietes sind nach den Planungsunterlagen zwei Bereiche für die Regenrückhaltung geplant. Genaue Angaben zur Tiefe und zu der geplanten Funktion der Erdbecken liegen derzeit noch nicht vor.

Ein Bereich befindet sich nahe von Schurf SCH K. Nach den Erkundungsergebnissen steht unter der Oberbodenabdeckung der kiesig-steiniger Alblehm im Übergang zum Verwitterungs-/Blockschutt an. Ein Versickerungsversuch wurde hier nicht durchgeführt. Die Durchlässigkeit kann lediglich abgeschätzt werden und liegt schätzungsweise in Verwitterungs-/Blockschutt bei 10⁻⁶ m/s bis 10⁻⁴ m/s, sodass eine Versickerung in diesem Bereich möglich ist.

Ein zweiter Versickerungsbereich befindet sich nahe der Sickerversuche SV 2 bis SV 4. Nach den Erkundungsergebnissen steht unter der Oberbodenabdeckung ebenfalls der kiesige Alblehm im Übergang zum Verwitterungs-/Blockschutt an. Die Versickerungsversuche ergaben gemäß Unterlage [5] Durchlässigkeiten zwischen etwa 2,5 x 10⁻⁴ und 6,5 x 10⁻⁴, sodass eine Versickerung in diesem Bereich möglich ist. Ansonsten gelten die Angaben in Unterlage [5].

Eine abschließende Bewertung ist erst nach Vorlage einer konkreten Planung möglich.

11 Angaben zur Bebauung

Zu der geplanten Bebauung des Erschließungsgebiets liegen keine Angaben vor. Zur grundsätzlichen Bebaubarkeit lassen sich folgende Angaben machen:

Unter den lokalen Auffüllungen folgen gering mächtigen Alblehme im Übergang zur Felsauflockerungszone bzw. die steinigen-blockigen Verwitterungsböden der Massenkalke (Schicht 3). Die anstehenden Stein-Schluffgemische der Felsauflockerungszone (Schicht 1) sind sehr heterogen zusammengesetzt (lokal wechselnde Stein- und

Schluff- bzw. Tonanteile). Sie sind grundsätzlich zur Lastabtragung geeignet, weisen aber je nach Steinanteil lokal unterschiedliche Tragfähigkeiten auf. Daher muss hier je nach Bauvorhaben eine nähere, bauwerksbezogenen Untersuchung erfolgen.

Ab Tiefen zwischen ca. 2 m und 5 m unter GOK setzten bereits die Massenkalksteine (Schicht 4) ein, die ebenfalls als Gründungshorizont geeignet sind. Die Kalksteine der sind lokal von unterschiedlicher Qualität. Es lassen sich jedoch sowohl Plattengründungen, als auch Gründungen auf Einzel- und Streifenfundamenten durchführen.

Lokal können jedoch Karsterscheinungen wie Dolinen und Karstwannen in den Massenkalken vorhanden sein. Hier werden dann ggf. Sondermaßnahmen erforderlich.

Mit Grundwasser wird erst in größeren Tiefen gerechnet, der Baugrund ist weitestgehend durchlässig.

Wir empfehlen, in jedem Einzelfall den Baugrund und die Grundwassersituation in Abstimmung auf das Bauvorhaben untersuchen zu lassen.

12 Angaben zur Erdbebensicherheit

Das Baugebiet ist nach der DIN 4149:2005-04 der Erdbebenzone "3" zugeordnet. Somit ergibt sich ein Bemessungswert der Bodenbeschleunigung von $a_g = 0.8 \text{ m/s}^2$. Des Weiteren kann der vorhandene Baugrund in die Baugrundklasse A und die Untergrundklasse R eingestuft werden. Die sich daraus ergebende C-R Kombination ergibt einen Untergrundparameter S von 1,0.

Die konstruktiven Anforderungen der DIN 4149:2005-04 sind zu beachten.

13 Abschließende Bemerkungen

Es wird darauf hingewiesen, dass die durchgeführten Feldarbeiten in ihrem Umfang nur eine punktuelle Erkundung der Baugrundverhältnisse darstellen. Abweichungen zu dem beschriebenen Schichtenaufbau und den Schichtmächtigkeiten können daher nicht ausgeschlossen werden.

Für den Straßenbau sollten zur Abschätzung des weiteren Aufbaus zunächst statische Lastplattendruckversuche ausgeführt werden.

Der Gutachter ist zu einer ergänzenden Stellungnahme aufzufordern, wenn sich aus der angetroffenen Geologie Fragen ergeben, die im vorliegenden Gutachten nicht oder abweichend erörtert wurden. Bei Veränderung der Planung muss eine erneute Beauftragung erfolgen.

Kornwestheim bei Stuttgart

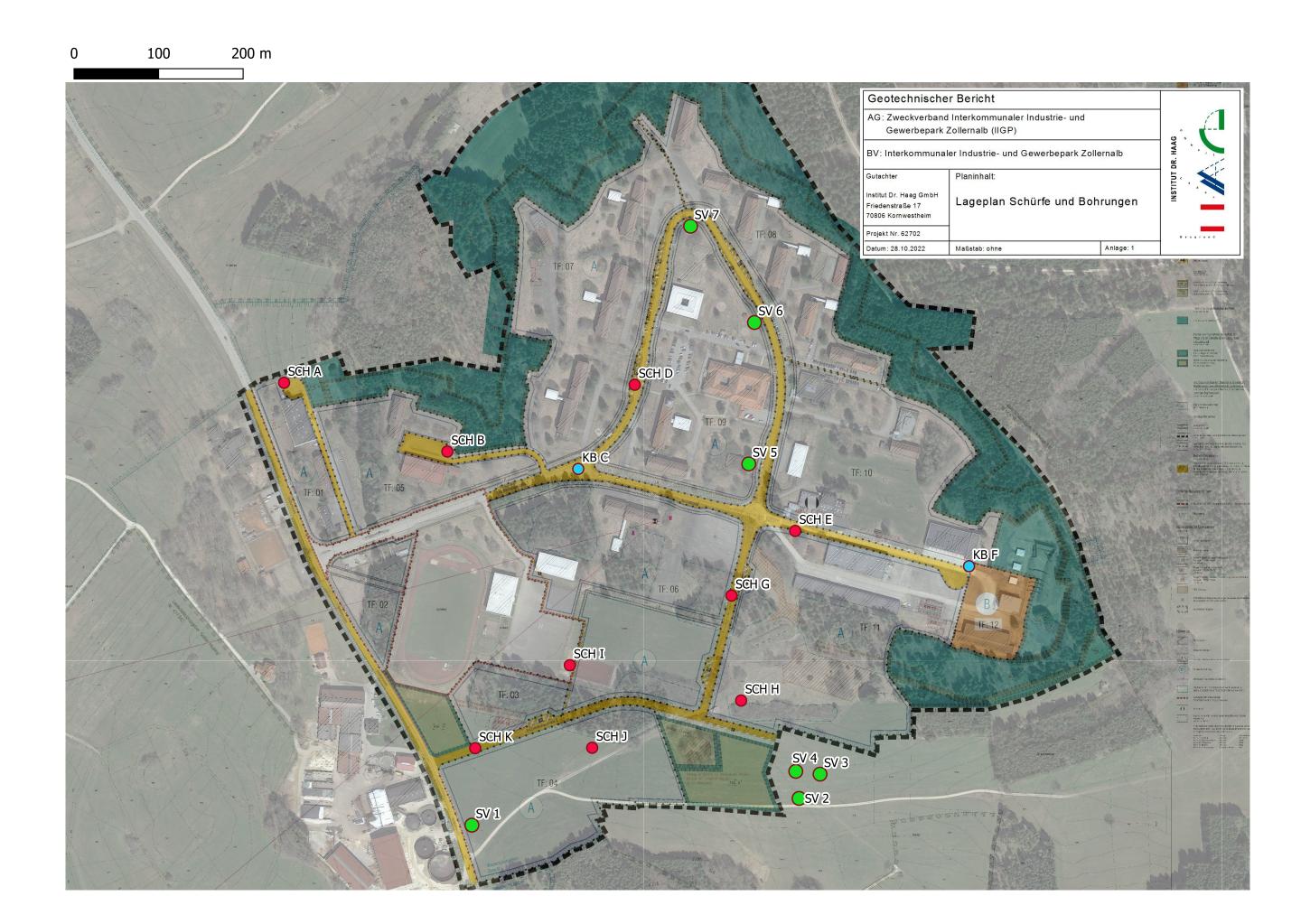
BV: Erschließung Interkommunaler Industrie- und Gewerbepark Zollernalb

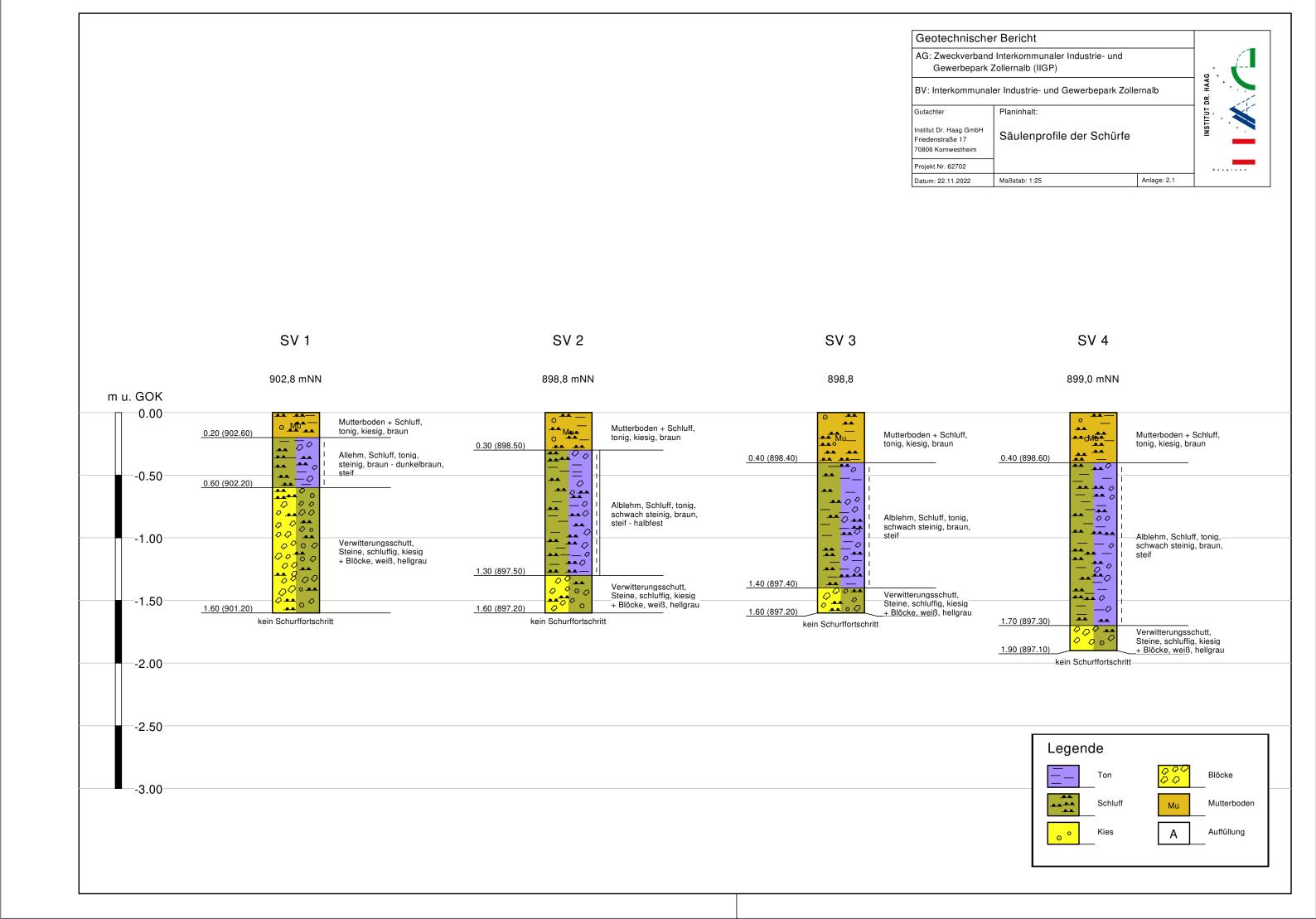
Das vorliegende Gutachten ist ausschließlich für das Vorhaben "Erschließung Interkommunaler Industrie- und Gewerbepark Zollernalb" zu verwenden.

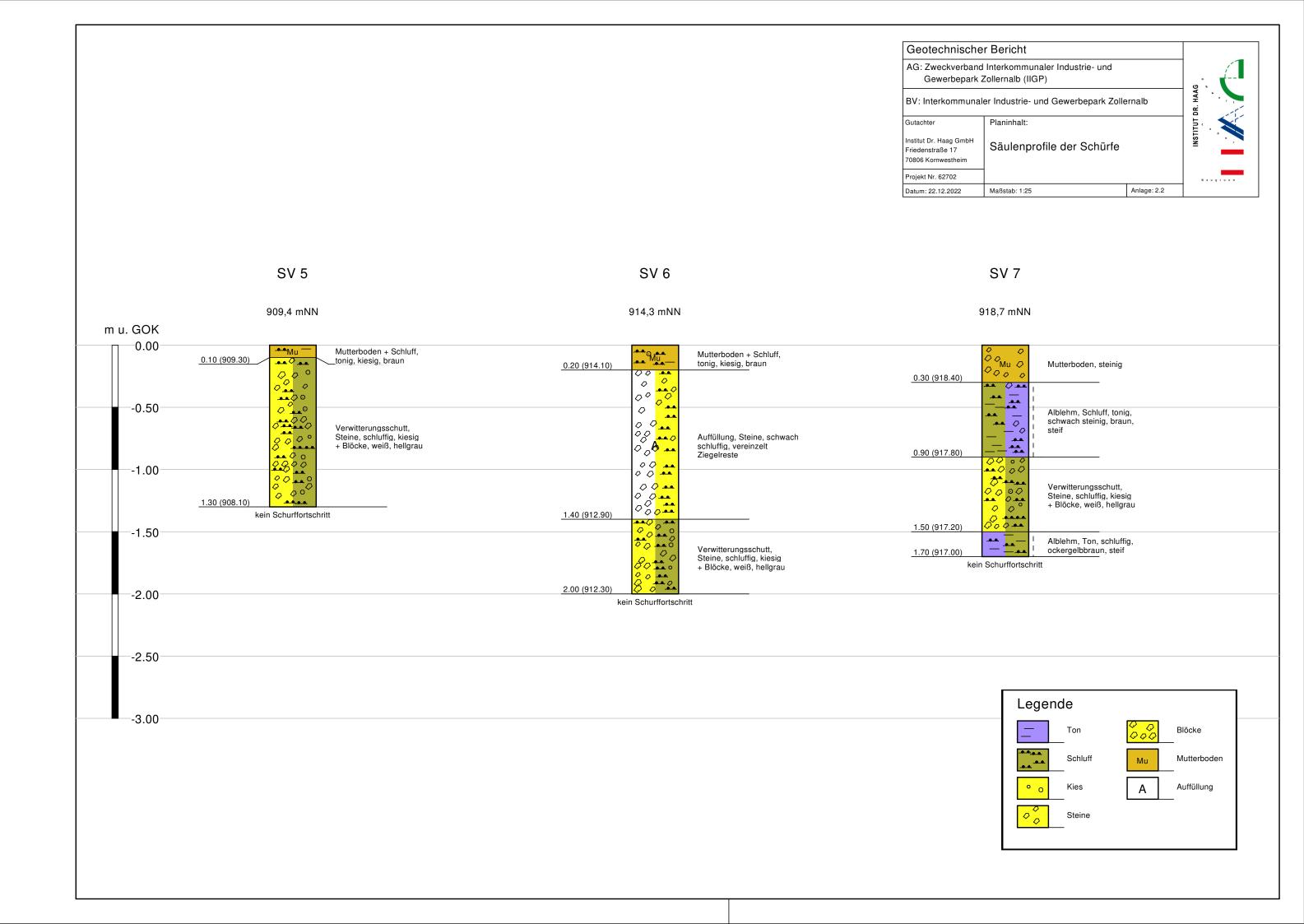
i. V. Ralph Göhring, Dipi.-Geol. Projektleiter

i. A. Antje Schnabel, Dipl.-Geologe Sachbearbeitung

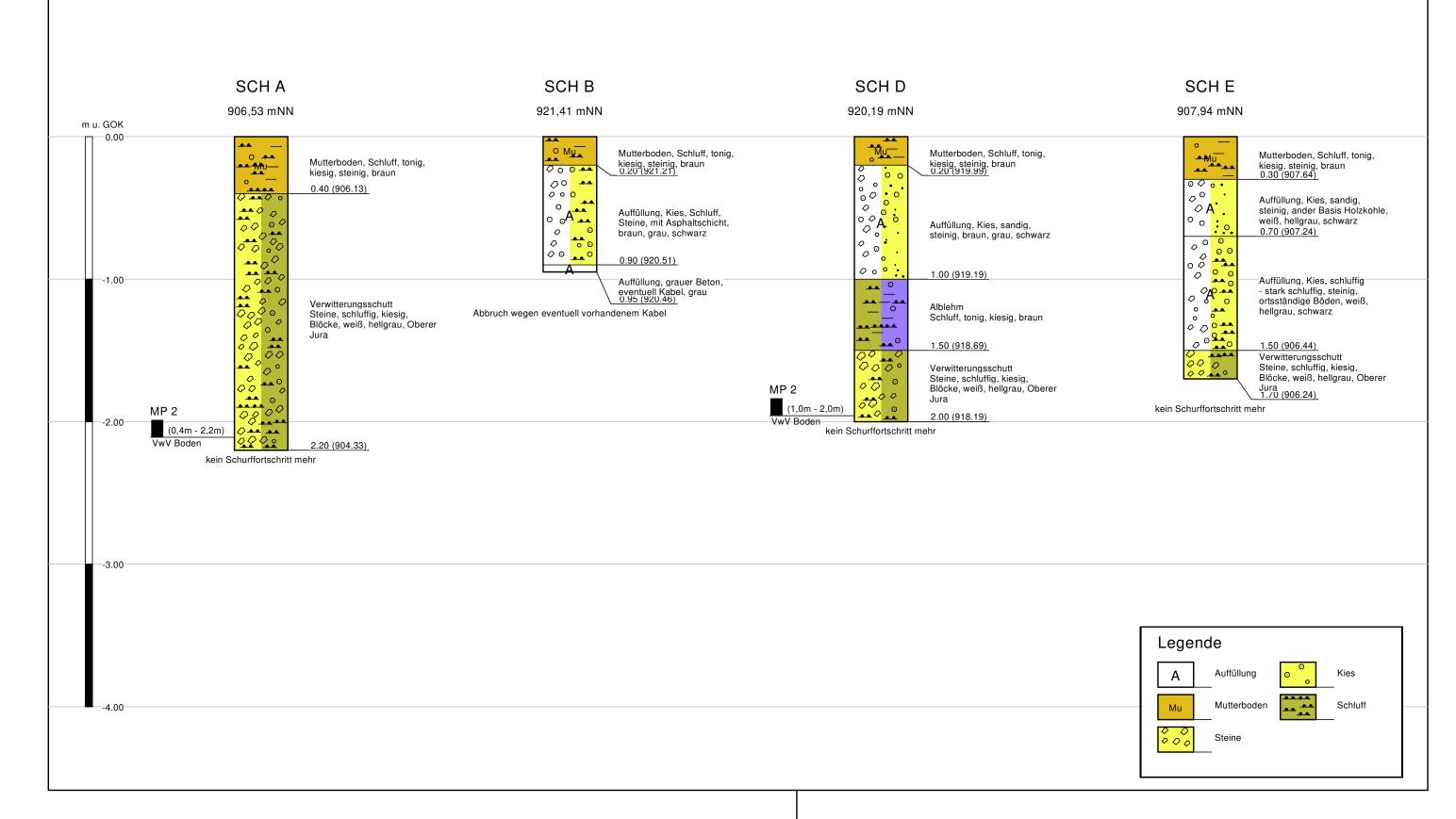
14 Tabellen-, Anlagen- und Anhangverzeichnis

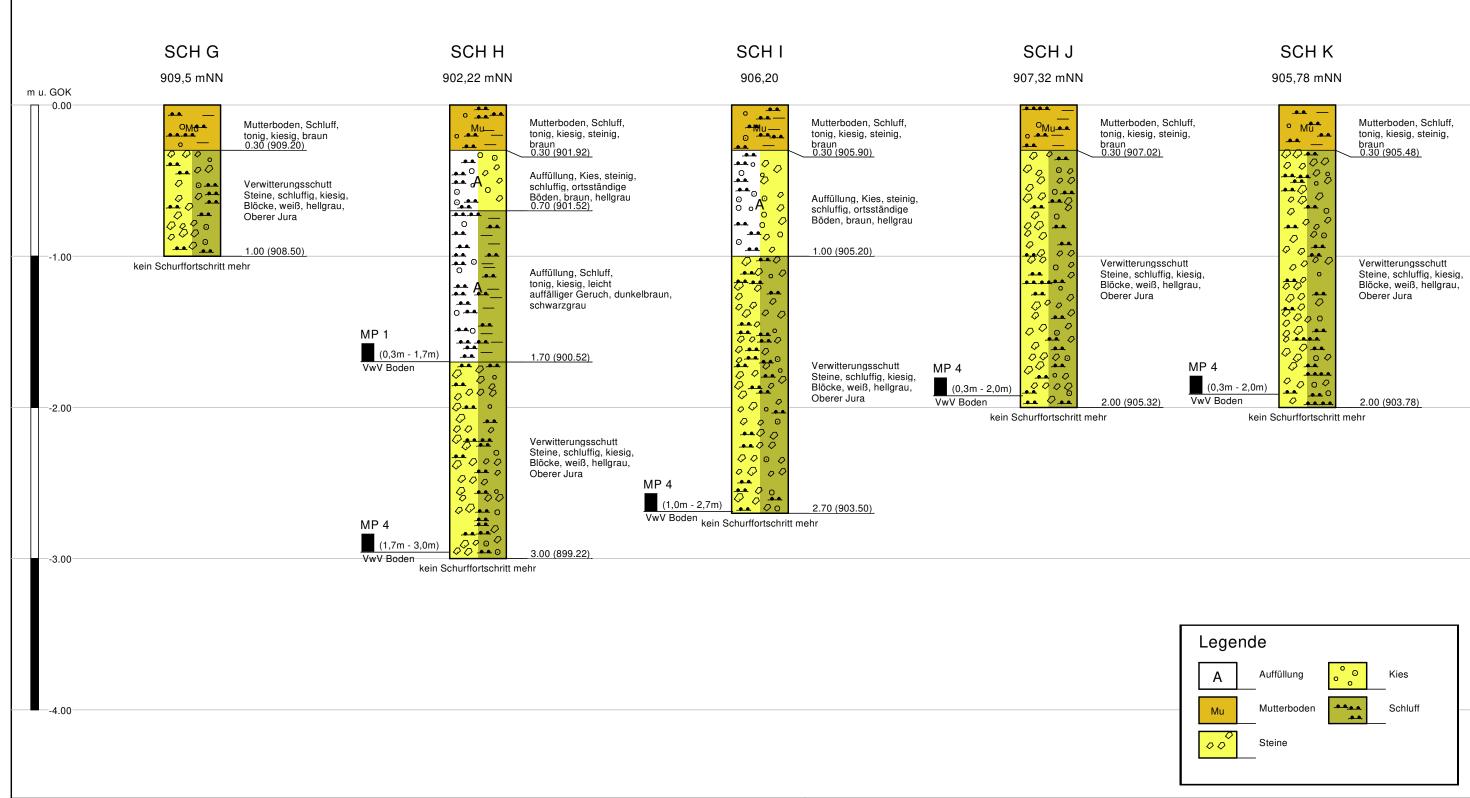

Tabellenverzeichnis

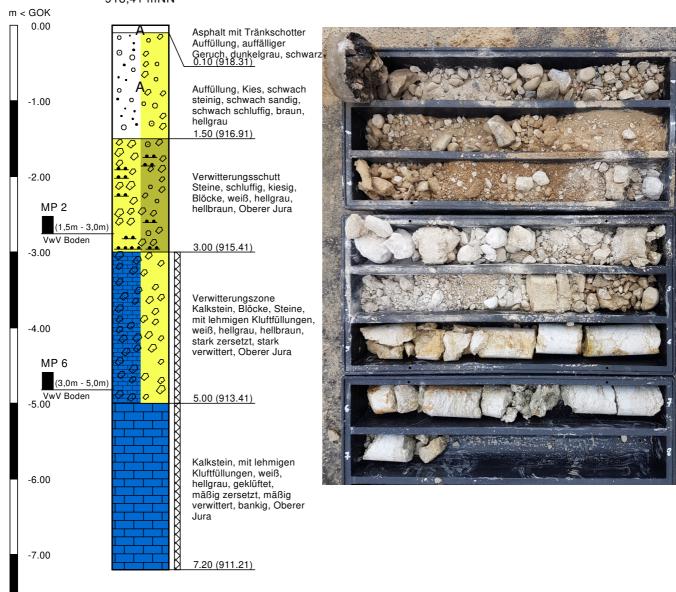

- Tabelle 1: Zusammenstellung der Felduntersuchungen
- Tabelle 2: Zusammenstellung der chemischen Laboruntersuchungen
- Tabelle 3: Mächtigkeiten und UK der Auffüllungen
- Tabelle 4: Klassifizierung / Eigenschaften Schicht 1b Auffüllung
- Tabelle 5: Klassifizierung / Eigenschaften Schicht 2 Mutterboden
- Tabelle 6: Oberkante Massenkalkstein in den Aufschlüssen
- Tabelle 7: Klassifizierung / Eigenschaften Schicht 3 Felsauflockerungszone,
 - (Alblehm und Verwitterungsschutt)
- Tabelle 8: Oberkante Massenkalkstein in den Aufschlüssen
- Tabelle 9: Klassifizierung / Eigenschaften Schicht 5 Unterer Massenkalk
- Tabelle 10: Homogenbereich Mineralböden
- Tabelle 11: Homogenbereich Festgestein
- Tabelle 12: Charakteristische Kennwerte
- Tabelle 13: Durchlässigkeitsbeiwerte der Böden / des Festgesteins
- Tabelle 14: Mindestdicke des frostsicheren Oberbaus nach RStO 12


Anlagen- und Anhangverzeichnis

- Anlage 1: Lageplan
- Anlage 2.1: Säulenprofile der Baggerschürfungen
- Anlage 2.2: Säulenprofile der Baggerschürfungen
- Anlage 2.3: Säulenprofile der Baggerschürfungen
- Anlage 2.4: Säulenprofile der Baggerschürfungen
- Anlage 2.5: Säulenprofil der Bohrung KB C
- Anlage 2.6: Säulenprofil der Bohrung KB F
- Anlage 3: Fotodokumentation Schürfe SCH A bis SCH K
- Anlage 4: Bewertungstabellen Analysenbefunde nach VwV Boden


Anhang 1: Prüfbericht 633658, Analytik nach VwV Boden - AGROLAB GmbH





KB C

-8.00

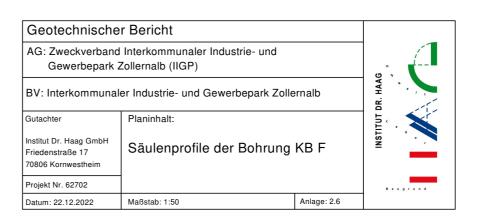
918,41 mNN

Legende

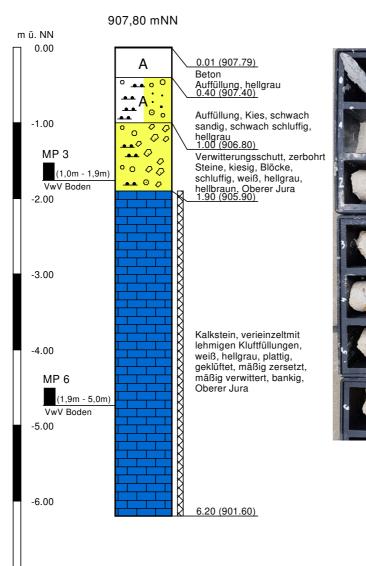
mäßig bis stark verwittert

Schluff

Kies


Steine

0


Blöcke

Kalkstein

Auffüllung

KB F

-7.00

-8.00

Legende

mäßig bis stark verwittert

Schluff

Blöcke

Kalkstein

Auffüllung

00

0

Steine

Kies

Zweckverband Interkommunaler Industrieund Gewerbepark Zollernalb (IIGP) Hauptstraße 9 72469 Meßstetten

> Kornwestheim, 21.12.2022 Projekt-Nr.: 62702-3

Anlage 3: Fotodokumentation zur Schurfaufnahme vom 13.10.2022 BV: Erschließung Interkommunaler Industrie- und Gewerbepark Zollernalb

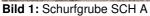


Bild 2: Aushub Schurf SCH A

Bild 3: Schurfgrube SCH B

Bild 4: Aushub Schurf SCH B

Bild 5: Schurfgrube SCH D

Bild 6: Schurfgrube SCH E

Bild 7: Schurfgrube SCH G, Böschung Hohlweg

Bild 8: Schurfgrube SCH H

Bild 9: Schurfgrube SCH I

Bild 10: Schurf J Bild 11: Schurf J

Bild 12: Schurf K Bild 13: Schurf K

Anlage 4: Untersuchungsbefu BV: Erschließung Interkomm			-	•	-	wV Boden	und UVN	l Erlass							
Institut Dr. Haag GmbH		Boden und Steine					Boden, < 10 % Bauschutt								
Probenahme vom 13.10.20 14./15.11.2022 Projektnummer 62702		MP 1 (Auffüllung, SCH H, 0,4m-1,7m)	MP 2 (Verwitterungsschutt, SCH A, SCH D)	MP 3 (Verwitterungsschutt, KB C, KB F)	MP 4 (Verwitterungsschutt, SCH H, SCH I)	MP 5 (Verwitterungsschutt, SCH J, SCH K)	MP 6 (Massenkalk, KB C, KB F)	VwV Boden 14.03.2007							
Parameter	Einheit			VwV E	Boden			Z 0 Sand	Z 0 Lehm / Schluff	ZO Ton	Z 0 *	Z 0*	Z 1.1	Z 1.2	Z 2
		Е	luat												
pH-Wert 6)	-	7,9	9,2	10,1	8,7	9,0	9,9			6,5-9,5	5			6-12	5,5-12
elektrische Leitfähigkeit	μS/cm	272	63	75	91	61	86			250				1500	2000
Chlorid 12)	mg/l	< 2	< 2	2,8	< 2	< 2	6,2			30				50	100
Sulfat 12)	mg/l	3,6	< 2	3,7	2,1	< 2	< 2			50				100	150
Cyanide gesamt	μg/l	< 5	< 5	< 5	< 5	< 5	< 5			5				10	20
Phenole / Phenolindex	μg/l	< 10	< 10	< 10	< 10	< 10	< 10			20				40	100
Arsen	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-		14		20	60
Blei	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-		40		80	200
Cadmium	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	-	-	-		1,5		3	6
Chrom (ges.)	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-		12,5		25	60
Kupfer	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-		20		60	100
Nickel	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	-	-	-		15		20	70
Quecksilber	μg/l	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	< 0,2	-	-	-		0,5		1	2
Thallium	μg/l	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5								
Zink	μg/l	< 50	< 50	< 50	< 50	< 50	< 50	-	-	-		150		200	600
			tstoff												
pH-Wert	-	7,8	8	8,2	7,8	7,8	8,2								
EOX	mg/kg	< 1	< 1	< 1	< 1	< 1	< 1	1	1	1		1		3	10
KW (C ₁₀ -C ₂₂)	mg/kg	< 50	< 50	< 50	< 50	< 50	< 50	100	100	100	100	200		00	1000
KW (C ₁₀ -C ₄₀)	mg/kg	< 50	< 50	< 50	< 50	< 50	< 50					400		00	2000
BTEX	mg/kg	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	1	1	1		1		1	1
LHKW	mg/kg	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	1	1	1		1	0	1	1
PAK 16	mg/kg	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	3	3	3	0.0	3	3	9	30
Benzo(a)pyren PCB 6 / 7	mg/kg	< 0,05 < 0,005	< 0,05 < 0,005	< 0,05 < 0,005	< 0,05 < 0,005	< 0,05 < 0,005	< 0,05 < 0,005	0,3 0,05	0,3 0,05	0,3 0,05	0,3 0,05	0,6 0,1		,9 15	3 0,5
Arsen	mg/kg	< 0,005 8,6	< 0,005 4,1	< 0,005	< 0,005 12,5	< 0,005 6,1	< 0,005 1,5	10	15	20		5/20		15 I5	150
Blei	mg/kg	20	7	3	21	10	< 2	40	70	100	100	140		10	700
Cadmium	mg/kg mg/kg	0,5	< 0.2	< 0.2	0,7	0,3	< 0.2	0,4	1	1,5	100	1		3	10
Chrom (ges.)	mg/kg	39	19	9	77	32	7	30	60	100	100	120		<u>. </u>	600
Kupfer	mg/kg	16	9	5	35	17	3	20	40	60	60	80		20	400
Nickel	mg/kg	39	21	13	81	37	13	15	50	70	70	100		50	500
Quecksilber	mg/kg	0.06	< 0,05	< 0,05	0,17	0.06	< 0,05	0,1	0,5	1	70	1		,5	5
Thallium	mg/kg	0,00	0,03	< 0,03	0,17	0,00	< 0,03	0,1	0,7	1	(),7		, <u>5</u> ,1	7
Zink	mg/kg	75	26	17	135	56	8	60	150	200	200	300		50	1500
Cyanide (ges.)	mg/kg	0,7	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	-	-	-	-	-		3	10
Einstufung nach VwV Boden	<u>, </u>	Z 0 (L/S)	Z 0 (L/S)	Z 0 (L/S)	Z 1.1	Z 0 (L/S)	Z 0 (L/S)		1	1		I.			

AGROLAB Labor GmbH

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633658 Bodenmaterial Analysennr.

Probeneingang 06.12.2022 Probenahme 13.10.2022

Probenehmer Auftraggeber (Schnabel)

Kunden-Probenbezeichnung MP1 (Auffüllung, SCH H, 0,4m-1,7m)

> Einheit Ergebnis Best.-Gr. Methode

Feststoff

, roctoton				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Masse Laborprobe	kg	° 4,90	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	° 83,2	0,1	DIN EN 14346 : 2007-03, Verfahren
pH-Wert (CaCl2)		7,8	2	DIN ISO 10390 : 2005-12
Cyanide ges.	mg/kg	0,7	0,3	DIN EN ISO 17380 : 2003-12
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß	ing/kg	<u> </u>	·	DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	8,6	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/kg	20	2	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/kg	0,5	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/kg	39	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/kg	16	1	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/kg	39	1	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/kg	0,06	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,3	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/kg	75	6	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Seite 1 von 3

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AGROLAB Labor GmbH

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.12.2022 Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. 633658 Bodenmaterial

Kunden-Probenbezeichnung MP1 (Auffüllung, SCH H, 0,4m-1,7m)

	Einheit	Ergebnis	BestGr.	Methode
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlorethen Tetrachlormethan Tetrachlorethen LHKW - Summe Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) PCB-Summe PCB-Summe PCB-Summe Fluaterstellung	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
Fluaterstellung				DIN FN 12457-4 : 2003-01

Eluat				
Eluat Eluaterstellung				DIN EN 12457-4 : 2003-01
☐ Temperatur Eluat	°C	19,1	0	DIN 38404-4 : 1976-12
≧ pH-Wert		7,9	0	DIN EN ISO 10523 : 2012-04
elektrische Leitfähigkeit	μS/cm	272	10	DIN EN 27888 : 1993-11
elektrische Leitfähigkeit Chlorid (CI)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
Sulfat (SO4)	mg/l	3,6	2	DIN EN ISO 10304-1 : 2009-07
Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12
E Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
E Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Phenolindex Cyanide ges. Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl)	mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-08
Thallium (TI)	ma/l	< 0.0005	0.0005	DIN EN ISO 17294-2 : 2017-01

((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Seite 2 von 3

AGROLAB Labor GmbH

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.12.2022

Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. **633658** Bodenmaterial

Kunden-Probenbezeichnung MP1 (Auffüllung, SCH H, 0,4m-1,7m)

 Einheit
 Ergebnis
 Best.-Gr.
 Methode

 Zink (Zn)
 mg/l
 <0,05</td>
 DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 13.12.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

mit dem

nicht

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

> > Methode

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633665 Bodenmaterial Analysennr.

Probeneingang 06.12.2022 Probenahme 13.10.2022

Probenehmer Auftraggeber (Schnabel)

Einheit

Kunden-Probenbezeichnung MP2 (Verwitterungsschutt, SCH A, SCH D) in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

Feststoff Analyse in der Gesamtfraktion DIN 19747 : 2009-07

Ergebnis

Best.-Gr.

Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Backenbrecher		•		DIN 19747 : 2009-07
Masse Laborprobe	kg	° 5,55	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	88,1	0,1	DIN EN 14346 : 2007-03, Verfahren A
pH-Wert (CaCl2)		8,0	2	DIN ISO 10390 : 2005-12
Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	4,1	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/kg	7	2	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/kg	19	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/kg	9	1	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/kg	21	1	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,2	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/kg	26	6	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.12.2022

Kundennr.

27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633665 Bodenmaterial Analysennr.

Kunden-Probenbezeichnung MP2 (Verwitterungsschutt, SCH A, SCH D)

_	Einheit	Ergebnis	BestGr.	Methode
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan Trichlorethen Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
Tetrachlorethen LHKW - Summe Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) PCB-Summe PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				

			DIN EN 12457-4 : 2003-0
		_	
°C	18,9	0	DIN 38404-4 : 1976-12
	9,2	0	DIN EN ISO 10523 : 2012-
μS/cm	63	10	DIN EN 27888 : 1993-1
mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-0
mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-0
mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-
mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,0002	0.0002	DIN EN ISO 12846 : 2012-
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	9,2 μS/cm 63 mg/l <2,0 mg/l <2,0 mg/l <0,01 mg/l <0,005 mg/l <0	9,2 0 0 0 0 0 0 0 0 0

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.12.2022 Datum

Kundennr. 27063853

PRÜFBERICHT

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr. Auftrag

Schnabel

Analysennr. 633665 Bodenmaterial

MP2 (Verwitterungsschutt, SCH A, SCH D) Kunden-Probenbezeichnung

	Einheit	Ergebnis	BestGr.	Methode
Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 12.12.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

mit dem

sind

Verfahren

nicht

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

> > Methode

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. **633666** Bodenmaterial

Probeneingang 06.12.2022
Probenahme 13.10.2022

Probenehmer Auftraggeber (Schnabel)

Kunden-Probenbezeichnung MP3 (Verwitterungsschutt, KB C, KB F)

Einheit

Feststoff
Analyse in der Gesamtfraktion DIN 19747 : 2009-07

Ergebnis

Best.-Gr.

Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Backenbrecher		•		DIN 19747 : 2009-07
Masse Laborprobe	kg	° 7,02	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	° 96,4	0,1	DIN EN 14346 : 2007-03, Verfahren A
pH-Wert (CaCl2)		8,2	2	DIN ISO 10390 : 2005-12
Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	2,0	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/kg	3	2	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/kg	9	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/kg	5	1	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/kg	13	1	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	<0,1	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/kg	17	6	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Seite 1 von 3

in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 13.12.2022 Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. 633666 Bodenmaterial

Kunden-Probenbezeichnung MP3 (Verwitterungsschutt, KB C, KB F)

	Einheit	Ergebnis	BestGr.	Methode
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
្ត្រី trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
<u>Trichlorethen</u>	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
€ Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
ຼື m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
© Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
ੈੱ Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
통 PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
1,1,1-Trichlorethan Trichlorethen Tetrachlormethan Tetrachlorethen LHKW - Summe Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (52) PCB (101) PCB (118) PCB (118) PCB (153) PCB (180) PCB-Summe PCB-Summe Eluat Eluaterstellung	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluaterstellung				DIN EN 12457-4 : 2003-01

			DIN EN 12457-4 : 2003-01
°C	18,9	0	DIN 38404-4 : 1976-12
	10,1	0	DIN EN ISO 10523 : 2012-0
μS/cm	75	10	DIN EN 27888 : 1993-1
mg/l	2,8	2	DIN EN ISO 10304-1 : 2009-0
mg/l	3,7	2	DIN EN ISO 10304-1 : 2009-0
mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-
mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-1
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	10,1 μS/cm 75 mg/l 2,8 mg/l 3,7 mg/l <0,01 mg/l <0,005 mg/l <0,	10,1 0

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.12.2022 Datum

Kundennr. 27063853

PRÜFBERICHT

Symbol

mit dem

sind

Verfahren

nicht

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025;2018 akkreditiert. Ausschließlich

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr. Auftrag

Schnabel

Analysennr. 633666 Bodenmaterial

Kunden-Probenbezeichnung MP3 (Verwitterungsschutt, KB C, KB F)

	Einheit	Ergebnis	BestGr.	Methode
Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 09.12.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Geschäftsführer

Dr. Carlo C. Peich Dr. Paul Wimmer

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

> > Methode

PRÜFBERICHT

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633667 Bodenmaterial

Auftrag
Analysennr.
Probeneingang 06.12.2022 Probenahme 13.10.2022

Auftraggeber (Schnabel) Probenehmer

Einheit

Kunden-Probenbezeichnung MP4 (Verwitterungsschutt, SCH H, SCH I)

Feststoff

Ergebnis

Best.-Gr.

ren s	Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
ıtah	Backenbrecher		•		DIN 19747 : 2009-07
e Ve	Masse Laborprobe	kg	° 4,92	0,001	DIN 19747 : 2009-07
n diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren	Trockensubstanz	%	° 79,4	0,1	DIN EN 14346 : 2007-03, Verfahren A
kkre	pH-Wert (CaCl2)		7,8	2	DIN ISO 10390 : 2005-12
it a	Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
h nic	EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Slic	Königswasseraufschluß				DIN EN 13657 : 2003-01
chlie	Arsen (As)	mg/kg	12,5	0,8	DIN EN ISO 17294-2 : 2017-01
SSn	Blei (Pb)	mg/kg	21	2	DIN EN ISO 17294-2 : 2017-01
Ŧ.	Cadmium (Cd)	mg/kg	0,7	0,2	DIN EN ISO 17294-2 : 2017-01
die	Chrom (Cr)	mg/kg	77	1	DIN EN ISO 17294-2 : 2017-01
kkre	Kupfer (Cu)	mg/kg	35	1	DIN EN ISO 17294-2 : 2017-01
18 a	Nickel (Ni)	mg/kg	81	1	DIN EN ISO 17294-2 : 2017-01
:50	Quecksilber (Hg)	mg/kg	0,17	0,05	DIN EN ISO 12846 : 2012-08
7025	Thallium (TI)	mg/kg	0,8	0,1	DIN EN ISO 17294-2 : 2017-01
C 11	Zink (Zn)	mg/kg	135	6	DIN EN ISO 17294-2 : 2017-01
SO/IE	Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
U U Z	Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
30	Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
mä	Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
g b	Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
l Sin	Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
hrer	Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
erfa,	Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
/ue	Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
htet	Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
eric	Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
aut b	Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
cum	Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dok	Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
sem	Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
die	Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.12.2022 Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633667 Bodenmaterial Analysennr.

Kunden-Probenbezeichnung MP4 (Verwitterungsschutt, SCH H, SCH I)

	Einheit	Ergebnis	BestGr.	Methode
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Dichlormethan cis-1,2-Dichlorethen trans-1,2-Dichlorethen Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan Trichlorethen Tetrachlormethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Tetrachlorethen LHKW - Summe Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) PCB-Summe PCB-Summe PCB-Summe (6 Kongenere) Eluat Eluaterstellung	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
				DIN EN 12457-4 : 2003-01
T . E	00	40.0		DIN 100 40 4 4 4070 40

			DIN EN 12457-4 : 2003-0
°C	10.0	0	DIN 38404-4 : 1976-12
10			
	8,7	0	DIN EN ISO 10523 : 2012-
μS/cm	91	10	DIN EN 27888 : 1993-1
mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-0
mg/l	2,1	2	DIN EN ISO 10304-1 : 2009-0
mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-
mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-
mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
mg/l	<0,0002	0.0002	DIN EN ISO 12846 : 2012-
	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	B,7 μS/cm 91 mg/l <2,0 mg/l 2,1 mg/l <0,01 mg/l <0,005 mg/l <0,	8,7 0 μS/cm 91 10 mg/l <2,0

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.12.2022 Datum

Kundennr. 27063853

PRÜFBERICHT

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr. Auftrag

Schnabel

633667 Bodenmaterial Analysennr.

Kunden-Probenbezeichnung MP4 (Verwitterungsschutt, SCH H, SCH I)

	Einheit	Ergebnis	BestGr.	Methode
Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 12.12.2022

Symbol

mit dem

sind

Verfahren

nicht

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. **633668** Bodenmaterial

Probeneingang 06.12.2022
Probenahme 13.10.2022

Probenehmer Auftraggeber (Schnabel)

Kunden-Probenbezeichnung MP5 (Verwitterungsschutt, SCH J, SCH K)

Feststoff Ergebnis Best.-Gr. Methode

i esision				
Analyse in der Gesamtfraktion				DIN 19747 : 2009-07
Backenbrecher		•		DIN 19747 : 2009-07
Masse Laborprobe	kg	° 5,60	0,001	DIN 19747 : 2009-07
Trockensubstanz	%	° 90,0	0,1	DIN EN 14346 : 2007-03, Verfahren A
pH-Wert (CaCl2)		7,8	2	DIN ISO 10390 : 2005-12
Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	6,1	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/kg	10	2	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/kg	0,3	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/kg	32	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/kg	17	1	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/kg	37	1	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/kg	0,06	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	0,3	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/kg	56	6	DIN EN ISO 17294-2 : 2017-01
Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Seite 1 von 3

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14289-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 13.12.2022

Kundennr.

27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633668 Bodenmaterial Analysennr.

Kunden-Probenbezeichnung MP5 (Verwitterungsschutt, SCH J, SCH K)

	Einheit	Ergebnis	BestGr.	Methode
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
Eluaterstellung				DIN EN 12457-4 : 2003-01

Eluaterstellung				DIN EN 12457-4 : 2003-0
Temperatur Eluat	°C	19,7	0	DIN 38404-4 : 1976-12
pH-Wert		9,0	0	DIN EN ISO 10523 : 2012-
elektrische Leitfähigkeit	μS/cm	61	10	DIN EN 27888 : 1993-1
Chlorid (CI)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-0
Sulfat (SO4)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-0
Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-
Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-0
Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-0
Quecksilber (Hg)	mg/l	<0.0002	0.0002	DIN EN ISO 12846 : 2012-

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.12.2022 Datum

Kundennr. 27063853

PRÜFBERICHT

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr. Auftrag

Schnabel

633668 Bodenmaterial Analysennr.

Kunden-Probenbezeichnung MP5 (Verwitterungsschutt, SCH J, SCH K)

	Einheit	Ergebnis	BestGr.	Methode
Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 12.12.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

mit dem

sind

Verfahren

nicht

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

Institut Dr. Haag GmbH Friedenstraße 17 70806 Kornwestheim

> Datum 13.12.2022 Kundennr. 27063853

> > Methode

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

633669 Bodenmaterial Analysennr.

Probeneingang 06.12.2022 Probenahme 13.10.2022

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol Probenehmer Auftraggeber (Schnabel)

Kunden-Probenbezeichnung MP6 (Massenkalk, KB C, KB F) Einheit

Feststoff DIN 10747 - 2000 07

Ergebnis

Best.-Gr.

Analyse	in der Gesamtfraktion				DIN 19747 : 2009-07
Backenl	brecher		•		DIN 19747 : 2009-07
Masse L	_aborprobe	kg	° 6,00	0,001	DIN 19747 : 2009-07
Trocken	nsubstanz	%	° 95,1	0,1	DIN EN 14346 : 2007-03, Verfahren
nH War	t (CaCl2)		8,2	2	DIN ISO 10390 : 2005-12
		mg/kg	<0,3	0,3	DIN ISO 10390 : 2003-12
Cyanide EOX	e ges.		<0,3 <1.0	0,3	DIN 38414-17 : 2017-01
	vasseraufschluß	mg/kg	<1,0	I	DIN 58414-17 : 2017-01 DIN EN 13657 : 2003-01
5		ma/ka	4.5	0.0	DIN EN 13037 . 2003-01 DIN EN ISO 17294-2 : 2017-01
Arsen (A	,	mg/kg	1,5	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb		mg/kg	<2		DIN EN ISO 17294-2 : 2017-01
Cadmiu	,	mg/kg	<0,2	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (mg/kg	7	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (mg/kg	3	1	DIN EN ISO 17294-2 : 2017-01
Nickel (I	,	mg/kg	13	1	
)	ilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium		mg/kg	<0,1	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn		mg/kg	8	6	DIN EN ISO 17294-2 : 2017-01
Kohlenwa	asserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenv	vasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphtha	alin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenap	hthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenap	hthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren		mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenan	thren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthrac	en	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoran	then	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren		mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a	a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chryser	า	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k	b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k	k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a	a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

Datum 13.12.2022

Kundennr.

27063853

PRÜFBERICHT

Auftrag 3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr.

Schnabel

Analysennr. **633669** Bodenmaterial

Kunden-Probenbezeichnung MP6 (Massenkalk, KB C, KB F)

	Einheit	Ergebnis	BestGr.	Methode
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				
Fluaterstellung				DIN FN 12457-4 · 2003-01

<u>S</u> Eluat				
Eluaterstellung				DIN EN 12457-4 : 2003-01
Temperatur Eluat	°C	18,9	0	DIN 38404-4 : 1976-12
≘ pH-Wert		9,9	0	DIN EN ISO 10523 : 2012-04
pH-Wert elektrische Leitfähigkeit	μS/cm	86	10	DIN EN 27888 : 1993-11
Chlorid (CI)	mg/l	6,2	2	DIN EN ISO 10304-1 : 2009-07
Sulfat (SO4)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12
Č Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
털 Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
E Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Sulfat (SO4) Phenolindex Cyanide ges. Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Ouecksilber (Hg)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Ha)	mg/l	<0.0002	0.0002	DIN EN ISO 12846 : 2012-08

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

13.12.2022 Datum

Kundennr. 27063853

PRÜFBERICHT

3360937 62702 / BV Erschließung Zollernalbkaerne Meßstetten // Fr. Auftrag

Schnabel

Analysennr. 633669 Bodenmaterial

Kunden-Probenbezeichnung MP6 (Massenkalk, KB C, KB F) Finhait

	Einheit	Ergebnis	BestGr.	Methode
Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 07.12.2022 Ende der Prüfungen: 12.12.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Philipp Schaffler, Tel. 08765/93996-600 serviceteam3.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

mit dem

sind

Verfahren

nicht